

Digitalización e Inteligencia Artificial

Dr. Koen Verbist, UNESCO Programa Hidrológico Intergubernamental (PHI)

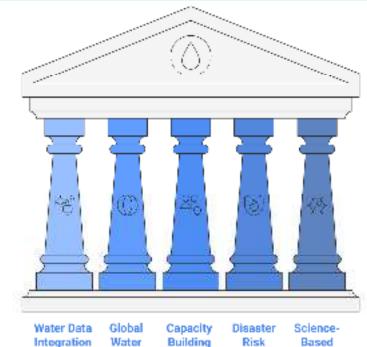
Desafíos e Oportunidades para la Digitalización

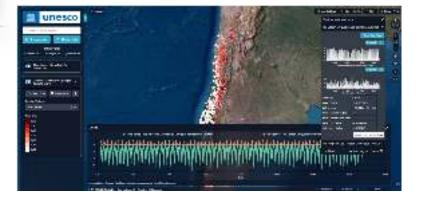
Desafíos para la Digitalización	Oportunidades
Mantener, expandir e automatizar el monitoreo hidrológico	Internet de las Cosas (IoT)
Integración de diferentes fuentes de datos	Sistemas Integradas y acceso libre de datos compartidos (IHP-WINS)
Integración observaciones in situ con sensores remotos	
Integración de modelos hidrológicos con observaciones	Sistemas de Alerta Temprana (EWS)
Integración de la Ciencia Ciudadana en sistemas de monitoreo	Ciencia Ciudadana
Utilización de Inteligencia Artificial para la gestión de Recursos Hídricos	Inteligencia Artificial (AI) para la gestión de RRHH
Capacitación en temas de digitalización	UNESCO Open Learning

Integrar Fuentes de Datos - IHP-WINS

IHP - Water Information Network System

IHP-WINS es la plataforma global de la UNESCO que apoya la transformación digital para el monitoreo y la gestión de los recursos hidricos.


Conecta **observaciones** en tiempo real, **teledetección**, **ciencia ciudadana** y **modelación hidrológica** en un entorno unificado, **abierto y multilingüe**, lo que permite un **monitoreo**, **análisis** y **toma de decisiones** más **integrados**.


Open Science = Open Access and Open Source

- Monitoreo en tiempo real e in situ
- Datos geoespaciales y de teledetección
- Mapas e información contextual
- Informes, atlas y publicaciones
- Datos de ciencia ciudadana, IoT
- Modelación hidrológica y herramientas analíticas
- Fortalecimiento de capacidades

https://ihp-wins.unesco.org/

IHP

Portal

Integrar datos de diferentes organizaciones

Unica

CaffeGA5

Los Hubs Organizacionales funcionan como repositorios centrales, permitiendo a instituciones, organizaciones, gestores de recursos hídricos y tomadores de decisiones digitalizar, gestionar y compartir sus datos hidrológicos, climáticos y contextuales en una plataforma unificada.

CIMMAIN

Integrar datos a nivel pais

Los Hubs Nacionales agrupan conjuntos de datos por Estados Miembros de la UNESCO, mostrando información hidrológica, climática y estadística nacional. Fortalecen la toma de decisiones basada en evidencia, el desarrollo de políticas y la colaboración internacional mediante datos abiertos y estructurados.

Aplicaciones Temáticas

Análisis temporal y a múltiples escalas

Evaluación temporal y análisis de tendencias

Gestión del agua subterráneo transfronteriza en África del

Soporte a la colaboración transfronteriza en gestión de RR.HH

Aplicaciones Temáticas

Evaluación rápida con datos de teledetección

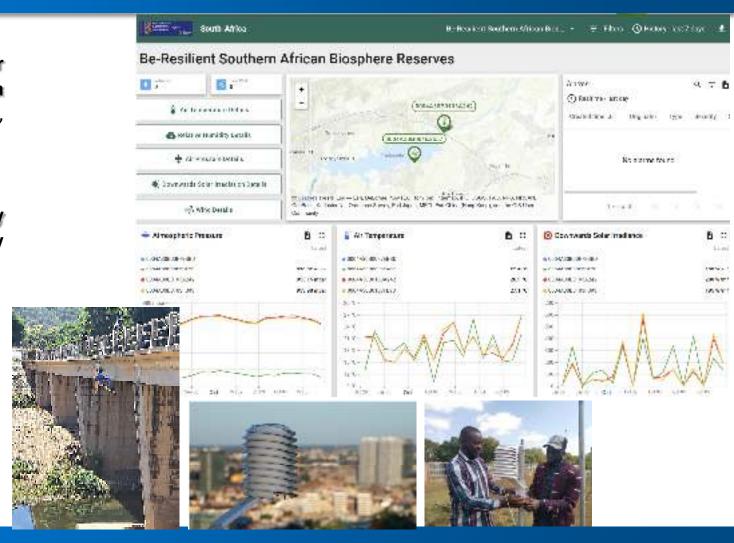
Integración de Datos Satelitales

Evaluación rápida de inundaciones y deslizamientos de tierra tras el huracán Erin utilizando datos de teledetección e información in situ

Observaciones de niveles de agua por satélite SWOT (Surface Water and Ocean Topography)

Internet-of-Things (IoT) para información en tiempo real

1. Monitoreo en Tiempo Real

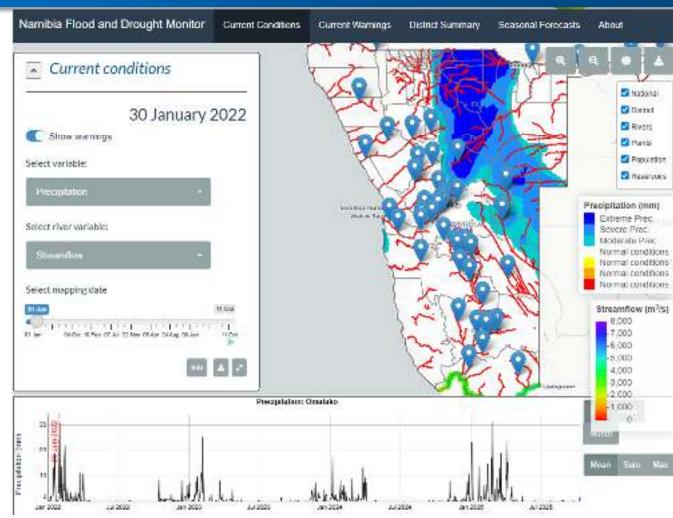

Continuamente monitorear condiciones medio-ambientales para detectar y responder a inundaciones, sequias, y otras amenazas.

2. Reduciendo la brecha en zonas de escasos datos

loT entrega soluciones de bajo costo y de fácil expansión para áreas remotas y de baja cobertura.

3. Toma de Decisión con datos en tiempo real

Facilitando el acceso a los datos en tiempo real, por ejemplo a través de la plataforma IoT de libre acceso de la UNESCO, facilitando la creación de 'dashboards' a medida para la toma de decisiones.


Sistemas de Monitoreo y Pronostico de Inundaciones e Sequias (EWS)

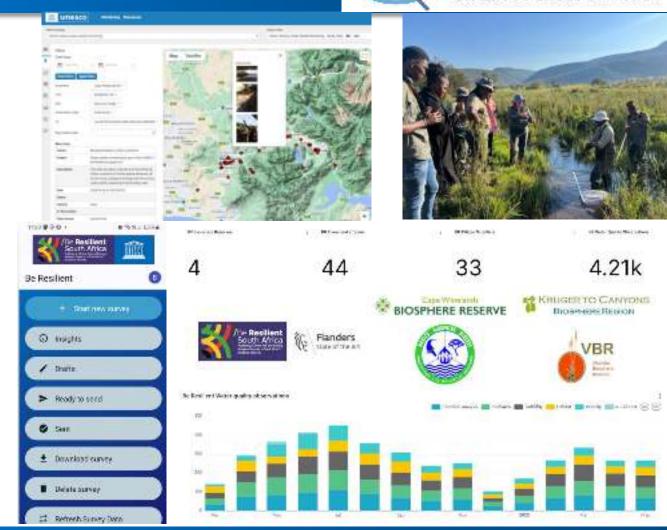
1. Sistemas Regionales y Nacionales

- 1 Regional → África
- 10 Nacionales → Botsuana, Madagascar, Malawi, Moruecos, Mozambique, Namibia, Nigeria, South-Africa, Zambia, Zimbabue
- 2 Transfronterizos → Buzi-Pungwe-Save (Zimbabue and Mozambique), Dnipro (Ucrania, Rusia, Belarus)

2. Datos satelitales como insumo

- 3. Entrega de indicadores múltiples
 - Escorrentía (inundaciones)
 - Índice de humedad de suelo (sequia)
 - Evapotranspiracion
 - Vegetación (producción agrícola)
 - Temperaturas (olas de calor)
 - Vientos
 - (calidad de agua)

Ciencia Ciudadana


1. Portal de Datos y App de Ciencia Ciudadana

- Fuente abierto, acceso libre
- Integra diferentes áreas de Ciencia Ciudadana (cantidad y calidad de agua, medioambiental)
- Activo en Sud-África, Seychelles, Kenia, y Bolivia, iniciando en Cuba, Jamaica, Ghana

2. Portal de Proyectos de Ciencia Ciudadana

- Recopilando todos los proyectos de Ciencia Ciudadana para monitoreo de RR.HH a nivel global
- Desarrollo de publicación de lecciones aprendidas y buenas practicas

IHP Open Learning

Explore the IHP Open Learning platform or participate in one of the latest open learning courses.

CAZALAC

Training on the African Drought Atlas Methodology

Start Aug. 7, 2024

GGRETA

Water Diplomacy and Transboundary Aquifer...

Start. Oct. 1, 2024

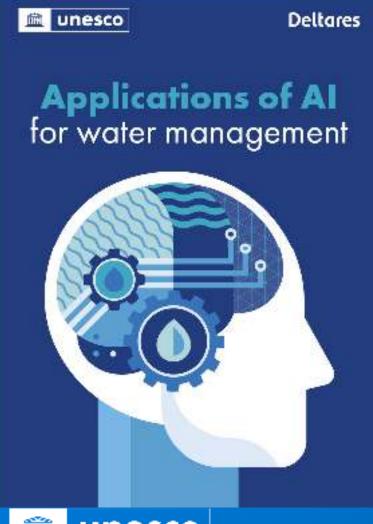
Introduction to Climate Risk Informed Decision Analysis...

Start: Anytime

UNESCO

Flood Hazard and Exposure Mapping

Start: April 1, 2025


UNESCO

Cookbook for Open Hardware Sensors for Water Resources...

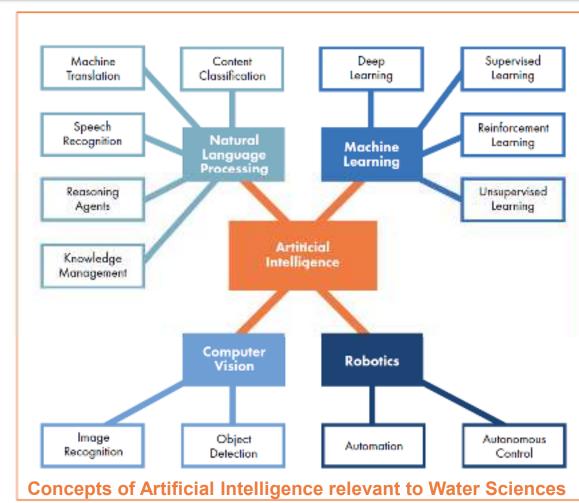
Start Anytime

- Cursos: Ofrece Cursos Masivos Abierto en Línea (MOOCs) y multilingüe para el manejo del agua
- Co-desarrollo de programas de entrenamiento
- Diversos perfiles, de tomadores de decisiones, científicos e profesionales.
- Certificados para participantes
- Actualmente 90 000+ participantes

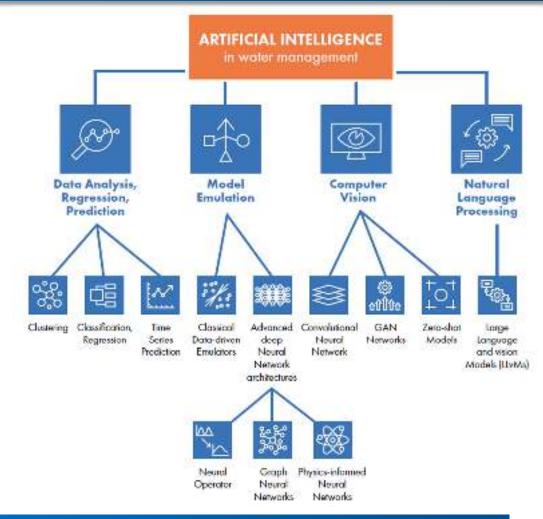
Publicación: Aplicaciones de IA para el Manejo de Recursos Hídricos

Introducción - Historia de la Inteligencia Artificial

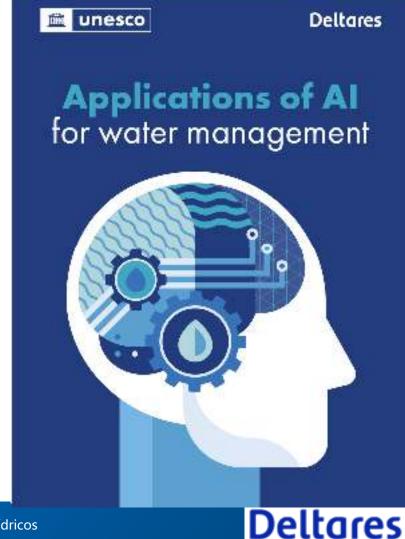
2nd Paradiam 3rd Paradiam 4th Paradigm 1st Paradigm Theoretical Computational Data-driven **Empirism** science science science $\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\nabla w + v\nabla^2 \mathbf{u} + \mathbf{g}$ 1600s 2000s 1700s 1800s 1900s


- Parte 2 Resumen de conceptos de lA y técnicas relevantes
- Parte 3 Aplicación de IA en el manejo de recursos hídricos
 - 3.1. Manejo de Recursos Hídricos
 - 3.2. Manejo de Riesgo Hídricos
 - 3.3. Cambio Climático, Adaptación y Creación de Resiliencia
 - 3.4. Manejo de Calidad de Agua
- Parte 4 Ética y el uso responsable de IA para recursos hídricos

Introducción – Conceptos de Inteligencia Artificial



Parte 2 - Resumen de conceptos de IA y técnicas relevantes



El Estado de IA para el Manejo de Recursos Hidricos

- La Ciencia de IA avanza rápido (los prototipos)
- Actualmente se mantiene una bajo madurez de las aplicaciones para RR.HH. (low TRL)
- Aplicaciones practicas están en marcha, pero requiere pilotos y desarrollo
- El acceso de datos de buena calidad y controlado es esencial para la implementación de IA
- Guías Éticas, 'explicabilidad' y supervisión es fundamental
- Requiere inversiones en infraestructura digital critica e intercambio de experiencias
- Requiere capacitación, normas y guías claras

Muchas Gracias

Por mas información, por favor contactar: k.verbist@unesco.org

